Translation of NRF mRNA is mediated by highly efficient internal ribosome entry.

نویسندگان

  • A Oumard
  • M Hennecke
  • H Hauser
  • M Nourbakhsh
چکیده

The ubiquitous transcription factor NRF (NF-kappaB repressing factor) is a constitutive transcriptional silencer of the multifunctional cytokine interferon-beta. NRF mRNA contains a long 5' untranslated region (5'UTR) predicted to fold into a strong secondary structure. The presence of stable hairpins is known to be incompatible with efficient translation by ribosomal scanning. Using dicistronic reporter gene constructs, we show that the NRF 5'UTR acts as an internal ribosome entry site (IRES) which directs ribosomes to the downstream start codon by a cap-independent mechanism. The relative activity of this IRES in various cell lines is at least 30-fold higher than that of picornaviral IRESs. The NRF 5'UTR also functions as a translational enhancer in the context of monocistronic mRNAs. Our results indicate that the NRF 5'UTR contains a highly potent IRES, which may allow for an alternate mode of translation under physiological conditions in which cap-dependent translation is inhibited.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hepatitis C virus internal ribosome entry site-dependent translation in Saccharomyces cerevisiae is independent of polypyrimidine tract-binding protein, poly(rC)-binding protein 2, and La protein.

Translation initiation of some viral and cellular mRNAs occurs by ribosome binding to an internal ribosome entry site (IRES). Internal initiation mediated by the hepatitis C virus (HCV) IRES in Saccharomyces cerevisiae was shown by translation of the second open reading frame in a bicistronic mRNA. Introduction of a single base change in the HCV IRES, known to abrogate internal initiation in ma...

متن کامل

Exploring Internal Ribosome Entry Sites as Therapeutic Targets

Initiation of eukaryotic mRNA translation may proceed via several different routes, each requiring a different subset of factors and relying on different and specific interactions between the mRNA and the ribosome. Two modes predominate: (i) so-called cap-dependent initiation, which requires all canonical initiation factors and is responsible for about 95-97% of all initiation events in eukaryo...

متن کامل

Structural basis for the biological relevance of the invariant apical stem in IRES-mediated translation

RNA structure plays a fundamental role in internal initiation of translation. Picornavirus internal ribosome entry site (IRES) are long, efficient cis-acting elements that recruit the ribosome to internal mRNA sites. However, little is known about long-range constraints determining the IRES RNA structure. Here, we sought to investigate the functional and structural relevance of the invariant ap...

متن کامل

The Pathway of HCV IRES-Mediated Translation Initiation

The HCV internal ribosome entry site (IRES) directly regulates the assembly of translation initiation complexes on viral mRNA by a sequential pathway that is distinct from canonical eukaryotic initiation. The HCV IRES can form a binary complex with an eIF-free 40S ribosomal subunit. Next, a 48S-like complex assembles at the AUG initiation codon upon association of eIF3 and ternary complex. 80S ...

متن کامل

Alternative translation of human fibroblast growth factor 2 mRNA occurs by internal entry of ribosomes.

Alternative initiations of translation of the human fibroblast growth factor 2 (FGF-2) mRNA, at three CUG start codons and one AUG start codon, result in the synthesis of four isoforms of FGF-2. This process has important consequences on the fate of FGF-2: the CUG-initiated products are nuclear and their constitutive expression is able to induce cell immortalization, whereas the AUG-initiated p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular and cellular biology

دوره 20 8  شماره 

صفحات  -

تاریخ انتشار 2000